

Valuation of Distributed Predictive Information in Robust Economic Dispatch

Prof. Yue CHEN The Chinese University of Hong Kong yuechen@mae.cuhk.edu.hk

Valuation of Distributed Predictive Information in Robust Economic Dispatch

Background

Scope of the work

Work methodology

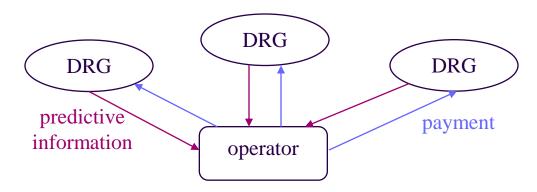
Results and achievements

Conclusion

Background

Uncertainty arises

Distributed renewable generators (DRGs) grow rapidly


- **DRG fluctuates & intermits**
- Operator may not have enough data
- More information is owned by DRGs
- Robust economic dispatch is a typical way to hedge against uncertainty, but it often ignores distributed predictive information.

The choice of uncertainty set has a crucial impact on the dispatch strategy

Question: What if the oprerator can buy predictive information from DRGs?

Scope of the Work

System operator:

Decides whether to buy information from DRGs

Constructs better uncertainty set based on the information Conducts robust economic dispatch using the uncertainty set

Decision-dependent uncertainty (DDU) exists: Information purchase decision (first-stage decision) affects the uncertainty set

Two-stage robust optimization with DDU

Work Methodology

Construct uncertainty set

Combine operator data and purchased information Use estimated expectation and variance.

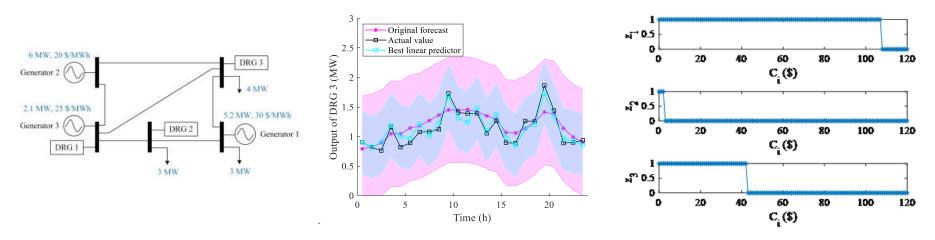
Develop robust economic dispatch model

Two-stage robust optimization with decision-dependent uncertainty (DDU)

Pre-dispatch stage: Decide the reference power and whether to buy predictive information

Re-dispatch stage: Adjust power for balance

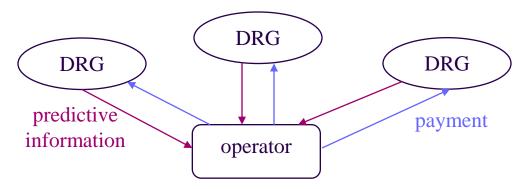
$$\min_{z,p,r} \sum_{i} C_{i} z_{i} + f(p,r) + \max_{u \in \mathcal{U}(z)} \min_{y \in \mathcal{Y}(p,r,u)} g(y)$$


Solve the model

Transform DDU into decision-independent uncertainty (DIU) Solve the problem by C&CG algorithm

Results and Achievements

Case study: A 5-bus system with 3 DRGs


With predictive information, the uncertainty set becomes smaller and still maintains robustness

- Distributed predictive information helps to reduce the operational cost
- Purchase decisions change as the payments change. The critical point reflects the value of information.
- **Direct application of C&CG algorithm fails to find the optimum**

Conclusions

Proposed Framework:

Improve uncertainty estimation and dispatch efficiency

Findings:

Distributed predictive information can help to decrease the operation cost

The transformation of decision-dependent uncertainty (DDU) into decision-independent uncertainty (DIU) is necessary before applying the C&CG algorithm

The distributed predictive information of the DRG with a larger variance tends to be more valuable

Thank You