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Introduction

Background

• The nodal load is usually an aggregated load composed of some
agents’ loads (Wang et al. 2018; Huang et al. 2020).

• However, the agents may have privacy concerns and do not want to
share the information.

• The operator cannot use individual load information centrally.

Our Goal
• Predict the aggregated load of inhomogeneous individual loads

• Exploit agents’ information on individual loads

• Preserve the agents’ privacy
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Introduction
Federated Learning (FL)

• FL is an alternative to centralized learning

• The training is conducted collaboratively among multiple agents
and each agent has a dataset (McMahan et al. 2017)

• Classification (Yang et al. 2019):

1. Horizontal FL (HFL): Datasets have different samples
Applications: Load forecasting, voltage control, attack detection, etc.
The effectiveness depends on the similarity between datasets

2. Vertical FL (VFL): Datasets have different feature spaces
Previous methods preserve privacy to a limited degree because of
gradient leakage (Liu et al. 2022)

3. Federated transfer learning: Datasets differ in samples and features
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Problem Description
Aggregated Load Forecasting Scenarios

• A household load is the aggregation of electricity demand of
multiple electrical appliances.

• A transformer aggregates the individual loads from different agents
and connects the upstream power system.

Household community

Apartment building

Commercial building

Charging station

Transformer

Figure: An example of aggregated load

The upstream power system opera-
tor can only observe the aggregated
load. Individual load data may help
the operator predict better.
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Problem Description
Dataset Structure

Each data sample contains both
individual and aggregated loads.

Aggregated load → label
Individual loads → features

Inhomogeneous agents may have
various patterns and their loads
are different features.

⇓

VFL is suitable for the problem
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Vertical FL (VFL): Datasets have different
feature spaces
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Horizontal FL (HFL): Datasets have
different samples
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Methodology
Homomorphic Encryption-Based Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC)

• Multiple parties compute a function together

• Each party cannot learn the others’ inputs

Homomorphic Encryption

• A way to implement SMPC

• Allow direct computation on the encrypted data due to the
homomorphic property:

[m1] ⋆ [m2] = [m1 ⋆m2], [·] denotes ciphertext

Compute m1 ⋆m2 without revealing m1 and m2
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Methodology
Homomorphic Encryption-Based Secure Multi-Party Computation

Cheon-Kim-Kim-Song (CKKS) Homomorphic Encryption Scheme

• Suitable for floating numbers and the precision can be estimated
and controlled

• Effective and efficient for addition
• An asymmetric encryption scheme

• One can encrypt the data if they know the public key
→ Each party encrypts the input

• One who has the private key can decrypt the ciphertext
→ The private key holder decrypts the computation result and obtains
the final output
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Methodology
Proposed Network and Privacy-Preserving Algorithm

• Each agent has a local LSTM block

• The LSTM outputs will be the in-
put of a distributed linear regression
block, whose weight is divided and
held by the agents, while the opera-
tor owns the bias parameter

Forward Propagation

Compute the linear regression output
using the CKKS scheme

Backpropagation

1. The operator posts the forecast error

2. Conduct ordinary backpropagation
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Figure: The proposed network
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Methodology
Proposed Network and Privacy-Preserving Algorithm

Preserving Privacy

1. The original load data of agents, the
local parameters, and their updates
are never sent out

2. The CKKS encryption scheme guar-
antees the secure computation of
the intermediate variable

3. The operator only receives the ag-
gregated intermediate variable
and cannot learn agents’ data
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Case Studies

Experiment tools: TensorFlow, Microsoft SEAL, TenSEAL

Case study 1: Household load
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The proposed method is effective
in aggregated load forecasting and
compatible with online usage

Case study 2: Electricity customer
dataset in Australia
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Case Studies
Comparison of methods

1. VFL with SMPC (Proposed)

2. VFL without SMPC

3. Forecast centrally

4. Forecast individually & SMPC

5. HFL

Method Individual Privacy- MSE Training
No. information preserving time (s)

1 ✓ ✓ 0.0149 7098.5
2 ✓ ✗ 0.0149 197.5
3 ✗ ✓ 0.0157 59.4
4 ✓ ✓ 0.0241 580.4
5 ✓ ✓ 0.0168 1829.0

Findings:

• The CKKS encryption achieves
high accuracy

• The computation time of the
proposed method is much
longer but still acceptable

• The MSE is decreased by 5.1%
due to the agents’ information

• HFL does not perform well for
highly inhomogeneous loads

The proposed method outperforms
other methods regarding privacy
and accuracy
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Conclusion

Contribution

This paper proposes a privacy-preserving VFL method for aggregated
load forecasting based on LSTM and CKKS encryption. The neural
network is divided into parts and each agent holds a part, where the
individual information and local model are kept private.

Findings of Case Studies

• Reduce the MSE by 5.1%

• Can be used in online scenarios

Future Work

Reduce forecasting error

• Incorporate advanced machine
learning techniques

• Employ other related features
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Thank you!
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