

Predict-and-Optimize Robust Unit Commitment with Statistical Guarantees via Weight Combination

Rui Xie, Yue Chen, Pierre Pinson

R. Xie, Y. Chen, and P. Pinson, "Predict-and-optimize robust unit commitment with statistical guarantees via weight combination," arXiv:2411.03138, 2024.

01 Introduction

Subject: Unit commitment (UC) under renewable and demand uncertainty **Goal:**

• Enhance **out-of-sample performance** • Ensure **robustness**

Idea: Bridge the gap between data and optimization

Approach

- Data-driven robust optimization (RO) with statistical guarantees
 - ✓ Consider the randomness of datadriven uncertainty set construction

$$\mathbb{P}^{N}[\Pr[u \in \mathcal{U}] \ge 1 - \varepsilon] \ge 1 - \delta$$

- Integrated forecasting and optimization (predict-and-optimize)
 - ✓ Different from traditional prediction that minimizes the forecast error
 - ✓ Optimize the performance of the final strategy

Optimization methods under uncertainty

- Stochastic programming (SP): Requires accurate probability distributions
- Traditional robust optimization (RO): Lacks statistical guarantees
- Distributionally robust optimization (DRO): Offers statistical guarantees but needs substantial data
- Data-driven RO with dimension-free statistical guarantee [1]: Not adapted to two-stage RO

"Predict-and-optimize" [2]:

- Utilized in UC [3,4]
- Lacks integration with RO and theoretical robustness guarantees

[1] L. J. Hong, Z. Huang, and H. Lam, "Learning-based robust optimization: Procedures and statistical guarantees," Management Science, 2021.

[2] A. N. Elmachtoub and P. Grigas, "Smart "predict, then optimize"," Management Science, vol. 68, no. 1, pp. 9–26, 2022.

^[3] X. Chen, Y. Yang, Y. Liu, and L. Wu, "Feature-driven economic improvement for network-constrained unit commitment: A closed-loop predict-and-optimize framework," IEEE Transactions on Power Systems, 2022.

^[4] H. Wu, D. Ke, L. Song, S. Liao, J. Xu, Y. Sun, and K. Fang, "A novel stochastic unit commitment characterized by closed-loop forecast-and-decision for wind integrated power systems," IEEE Transactions on Power Systems, 2024.

02 Two-Stage UC Under Uncertainty

香港中文大學 The Chinese University of Hong Kong

• Aim: Solve a chance-constrained UC problem

Day-ahead dispatch cost $\min_{x \in \mathcal{X}, \eta} f(x) + \eta \qquad \text{Intraday redispatch cost}$ s.t. $\Pr\left[\min_{y \in \mathcal{Y}(x, u)} h(y) \le \eta\right] \ge 1 - \varepsilon$

- The **accurate** distribution is unknown
- Consider a conservative approximation (Lemma 1) with $Pr[u \in U] \ge 1 \varepsilon$

 $\min_{x \in \mathcal{X}} f(x) + \max_{u \in \mathcal{U}} \min_{y \in \mathcal{Y}(x,u)} h(y)$ $\downarrow \quad \text{Linearized cost function and constraints}$ $\text{Two-stage robust UC} \quad \min_{x \in \mathcal{X}} C^T x + \max_{u \in \mathcal{U}} \min_{y:Ay \ge Bx + Du + E} F^T y$

02 Robust UC with Statistical Guarantees

Data-driven uncertainty set and statistical guarantees

- What we want: An uncertainty set s.t. $\mathbb{P}^{N}[\Pr[u \in \mathcal{U}] \ge 1 \varepsilon] \ge 1 \delta$
- What we have: Day-ahead **prediction** \hat{u} and historical **forecast error** $e_{1:N}$
- Assumption: Day-ahead forecast errors are **i.i.d. continuous** random variables
- Steps
 - ✓ Divide the historical forecast error data into two **disjoint** groups N_1 and N_2
 - \checkmark N_1 determines the ellipsoid's shape and center
 - \checkmark N₂ determines the size (to include enough data points in the ellipsoid)
- **Theorem 1**: The optimal solution $x_0 \coloneqq x_{\mathcal{U}_1}^*$ satisfies

$$\mathbb{P}^{N}\left[\Pr\left[0 \leq O_{x_{0}} \leq O_{\mathcal{U}_{1}}\right] \geq 1 - \varepsilon\right] \geq 1 - \delta$$

Optimal value of the chance-constrained problem P Optimal value of the RO problem

Performance of the obtained solution

02 Robust UC with Statistical Guarantees

Uncertainty set reconstruction: To reduce conservativeness

- Leverage data and UC problem information
- Lemma 1 (The best uncertainty set): If (x^*, η^*) is optimal in the chance-constrained problem, then $O = O_{\mathcal{U}^*}$, where

$$\mathcal{U}^* = \left\{ u \middle| \min_{y \in \mathcal{Y}(x^*, u)} h(y) \le \eta^* \right\}, \Pr[u \in \mathcal{U}^*] \ge 1 - \varepsilon$$

• Approximate \mathcal{U}^* using

$$(x,\eta) = (x_0, O_{x_0} - f(x_0))$$

An obtained solution

Estimated performance in the historical dataset

• **Theorem 2** (Statistical guarantee):

$$\mathbb{P}^{N} \Big[\Pr \Big[0 \le O_{x_{1}} \le O_{\mathcal{U}_{2}} \le f(x_{0}) + \beta \Big] \ge 1 - \varepsilon \Big] \ge 1 - \delta$$

Improve performance

02 Robust UC with Statistical Guarantees

Solution algorithm

- Uncertainty sets are either ellipsoidal or polyhedral
- Use the C&CG algorithm to solve two-stage RO problems

Algorithm 1: Solution of robust unit commitment **Input:** Parameters of (9); ε ; δ ; \mathcal{U}_0 ; \hat{u} ; $e_{1:N}$; N_2 **Output:** Unit commitment strategy x_1 Two datasets $\begin{bmatrix} 1 & N_1 \leftarrow N - N_2 \\ 2 & \text{Divide } e_{1:N} \text{ into } e_{1:N_1}^{(1)} \text{ and } e_{1:N_2}^{(2)} \end{bmatrix}$ Construction $\begin{cases} 3 \text{ Calculate } \mu \text{ and } \Sigma \text{ according to (13)} \\ 4 \alpha \leftarrow \max\{(e_n^{(1)} - \mu)^\top \Sigma^{-1}(e_n^{(1)} - \mu) \mid n = 1, 2, \dots, N_1\} \\ 5 \mathcal{U}'_1 \leftarrow \{u \in \mathcal{U}_0 \mid (u - \hat{u} - \mu)^\top \Sigma^{-1}(u - \hat{u} - \mu) \leq \alpha\} \end{cases}$ 6 Solve problem (9) with $\mathcal{U} = \mathcal{U}'_1$ using the C&CG C&CG algorithm and obtain the optimal solution x_0 7 $b_n \leftarrow \min_{y:Ay \ge Bx_0 + D(\hat{u} + e_n^{(2)}) + E} F^\top y$, for $n = 1, 2, \dots, N_2$ 8 Arrange $b_n, n = 1, 2, \dots, N_2$ from small to large and Reconstruction \dashv get $b'_n, n = 1, 2, \dots, N_2$ 9 $n^* \leftarrow \min\{n | \sum_{m=0}^{n-1} C_{N_2}^m (1-\varepsilon)^m \varepsilon^{N_2-m} \ge 1-\delta\}$ 10 $\beta \leftarrow b'_{n^*}$ 11 $\mathcal{U}_2 \leftarrow \{ u \in \mathcal{U}_0 | \exists y, \text{s.t. } Ay \geq Bx_0 + Du + E, F^\top y \leq \beta \}$ C&CG 12 Solve problem (9) with $\mathcal{U} = \mathcal{U}_2$ using the C&CG algorithm and return the optimal solution x_1

03 Integrated Forecasting and Optimization Framework

香港中文大學 The Chinese University of Hong Kong

• Predict-and-optimize framework

• Construct a multilayer perceptron (MLP)based surrogate model to **speed up** the weight optimization

04 Case Studies: IEEE 30-Bus System

TABLE I Average Forecast Errors of Different Methods

	Method	RMSE	MAE
	M1	84.39	54.64
	M2	80.93	52.37
	M 3	80.44	55.23
Minimize MSE C1		76.14	51.26
Proposed	C2 (30-bus)	76.95	52.29
	C2 (118-bus)	78.72	53.80

Prediction data

- Three forecasting methods
- Combining predictions can enhance accuracy

Method comparison

TABLE II					
SETTINGS OF UNIT COMMITMENT METHODS FOR COMPARISON					

	Method	Statistical	Integrated forecasting	Uncertainty set
		guarantee	and optimization	reconstruction
	SP	×	×	×
100%	RO1	×	×	×
95%	RO2	×	×	×
	P1	\checkmark	\checkmark	×
	P2	\checkmark	×	\checkmark
	Proposed	\checkmark	\checkmark	\checkmark

TABLE III UNIT COMMITMENT RESULTS OF DIFFERENT METHODS IN MODIFIED IEEE 30-BUS System

Method	Objective (\$)	Feasible rate	Total cost (\$)	Time (s)
SP	84832	88%	82985	218
RO1	106810	100%	92652	143
RO2	97350	97%	90468	94
P1	97848	98%	89149	124
P2	90122	98%	88318	147
Proposed	89725	98%	88243	121

- SP lacks robustness
- Traditional data-driven RO does not have statistical guarantees
- The proposed method has the **lowest** objective value and test total cost among methods that have **statistical guarantees**

A Case Studies: A special case of two random loads

香港中文大學 The Chinese University of Hong Kong

Project the uncertainty sets onto two dimensions

- Bound: \mathcal{U}_0
- RO1: 100% data points
- RO2: 95% data points
- P1: $\mathbb{P}^{N}[\Pr[u \in \mathcal{U}] \ge 95\%] \ge 95\%$
- $\mathbf{RO2} \subset \mathbf{P1} \subset \mathbf{RO1}$
- Proposed_1, Proposed_2: The first and second uncertainty sets in the proposed method
- Proposed_2 excludes some **high-cost scenarios** in Proposed_1, but includes other regions to ensure the statistical guarantee

04 Case Studies: Sensitivity Analysis

香港中文大學 The Chinese University of Hong Kong

Impact of weight *w*

Requirements for statistical guarantee

• p: Proportion of points outside the uncertainty set

ε

δ

• Developed a predict-and-optimize two-stage robust UC method with statistical guarantees

→ Improve out-of-sample performance

- Predict-and-optimize integration
- Statistical guarantee
- Case studies show that the proposed method
 - **Balances** robustness and out-of-sample performance
 - **Outperforms** traditional SP and RO methods